Learning View Generalization Functions

نویسنده

  • Thomas M. Breuel
چکیده

Learning object models from views in 3D visual object recognition is usually formulated either as a function approximation problem of a function describing the view-manifold of an object, or as that of learning a class-conditional density. This paper describes an alternative framework for learning in visual object recognition, that of learning the view-generalization function. Using the view-generalization function, an observer can perform Bayes-optimal 3D object recognition given one or more 2D training views directly, without the need for a separate model acquisition step. The paper shows that view generalization functions can be computationally practical by restating two widely-used methods, the eigenspace and linear combination of views approaches, in a view generalization framework. The paper relates the approach to recent methods for object recognition based on nonuniform blurring. The paper presents results both on simulated 3D “paperclip” objects and real-world images from the COIL-100 database showing that useful view-generalization functions can be realistically be learned from a comparatively small number of training examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning from Multiple Partially Observed Views - an Application to Multilingual Text Categorization

We address the problem of learning classifiers when observations have multiple views, some of which may not be observed for all examples. We assume the existence of view generating functions which may complete the missing views in an approximate way. This situation corresponds for example to learning text classifiers from multilingual collections where documents are not available in all languag...

متن کامل

Sparse Semi-supervised Learning Using Conjugate Functions

In this paper, we propose a general framework for sparse semi-supervised learning, which concerns using a small portion of unlabeled data and a few labeled data to represent target functions and thus has the merit of accelerating function evaluations when predicting the output of a new example. This framework makes use of Fenchel-Legendre conjugates to rewrite a convex insensitive loss involvin...

متن کامل

Generalization Properties and Implicit Regularization for Multiple Passes SGM

We study the generalization properties of stochastic gradient methods for learning with convex loss functions and linearly parameterized functions. We show that, in the absence of penalizations or constraints, the stability and approximation properties of the algorithm can be controlled by tuning either the step-size or the number of passes over the data. In this view, these parameters can be s...

متن کامل

On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications

In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.

متن کامل

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

The stochastic gradient descent (SGD) method and its variants are algorithms of choice for many Deep Learning tasks. These methods operate in a small-batch regime wherein a fraction of the training data, say 32–512 data points, is sampled to compute an approximation to the gradient. It has been observed in practice that when using a larger batch there is a degradation in the quality of the mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0712.0136  شماره 

صفحات  -

تاریخ انتشار 2003